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Abstract

Free convection of rate ¯uids of the grade type in an inclined cavity of arbitrary aspect ratio is investigated in
two dimensions by a regular perturbation in terms of the Grashof number. Fluids of grade N are assumed to be

Fourier and Boussinesq ¯uids. We show that the series are asymptotic in character. Non-Newtonian e�ects appear
at the third order of the analysis even though the Giesekus±Tanner theorem is not valid. The relative contributions
of the elastic and shear rate dependent viscosity characteristics of the liquid to the non-Newtonian behavior are

investigated through a parametric study, together with the dependence of the Nusselt number on the non-linear
properties of the ¯uid. The e�ects of the aspect ratio and the inclination of the enclosure on the ¯ow ®eld and the
heat transfer coe�cient are also investigated. An interesting instability of the ¯uid of grade three with a negative

®rst Rivlin±Ericksen constant triggered by elastic e�ects is identi®ed and the implications concerning heat transfer
characteristics are discussed. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Buoyancy driven ¯ows in enclosures are quite com-
mon. Well known examples of natural convection of

linear ¯uids are heat transfer across double-glazed win-

dows, solar collectors, electronic cooling, etc. Although

these ¯ows are three-dimensional, most studies have
solved the two-dimensional equations of motion and

energy. However, two-dimensional results provide

insight into the more complicated three-dimensional
¯ows. Reviews of the literature for natural convection

in rectangular enclosures have been reported by

Ostrach [1] and more recently by Gebhart et al. [2].

Many ¯uids encountered in the food, pharmaceuti-

cal, polymer, paper and paint industries exhibit non-

Newtonian behavior. Non-isothermal non-Newtonian
transport in internal ¯ows is frequently encountered in
process industry applications such as ¯ow of polymers,

paints, suspensions, etc. in pipes and channels of vari-
ous con®gurations. Buoyancy induced e�ects are
undesirable in many of these manufacturing processes.

The majority of these ¯ows may fall essentially into
the class of forced convection or mixed convection.
However, a detailed analysis of pure buoyancy induced
convection would give insight into the role and e�ects

of buoyancy in these ¯ows. In spite of its obvious po-
tential importance, there are very few studies, reported
in the literature, for free convection in enclosures

based on non-Newtonian models. Two recent surveys
by Gebhart et al. [2] and Shenoy [3] mention only two
studies on natural convection in a rectangular en-

closure. One of these concerns viscoinelastic pseudo-
plastic power law ¯uids, and reports experimental
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Nomenclature

A�i , i � 1, 2, 3 the ®rst three Rivlin±
Ericksen tensors

Cn, Dn; ÿ1 < n < �1 complex constants in the

biorthogonal series at the
®rst order of the pertur-
bation algorithm

D half length of the side of
the enclosure parallel to
the Y axis

eX, eY unit vectors

E elasticity number (¯ow
independent): ratio of the
Weissenberg and Rey-

nolds numbers
EG � Gr Grashof number
g gravitational constant

G�s� shear relaxation modulus
k power index in the ex-

pression for the shear
relaxation modulus

l aspect ratio
L half length of the side of

the enclosure parallel to

the X axis
Nu average Nusselt number
Nu(x ) local Nusselt number

Pr Prandtl number
Ra Rayleigh number
Re Reynolds number

S shear-thinning number
(¯ow independent): ratio
of the secondary shear-
thinning number St to the

Reynolds number Re
S� dimensional form of the

extra-stress tensor

S dimensionless form of the
extra-stress tensor S�

S�i , i � 1, 2, 3 dimensional form of the

component extra-stress
tensors

Si�S�j �, i � j � 1, 2, 3 dimensionless form of the
component extra-stress

tensors S�i ; the superscript
( j ) indicates order in the
perturbation algorithm

sn, ÿ1 < n < �1 complex eigenvalues at
the ®rst order of the per-
turbation algorithm

St secondary shear-thinning
number (¯ow dependent)

T dimensional temperature
®eld

T0 constant low temperature

of one side of the en-
closure of length 2L

T1 constant high temperature

of the other side of the
enclosure of length 2L

tr trace of the second-order
tensor

u� � �u�, v�� dimensional form of the
velocity vector with the X
component denoted by u�

and Y component by v�

W Weissenberg number
�X, Y � dimensional coordinates

with X and Y axis parallel
to the sides of length 2L
and 2D, respectively, of
the enclosure with the ori-

gin situated at mid-point
of the box

�x, y� dimensionless coordinates

with x and y axis parallel
to the sides of length 2l
and 2, respectively, of the

enclosure with the origin
located at mid-point of
the box

Greek symbols
a coe�cient of thermal dif-

fusivity

a�i , i � 1, 2 dimensional Rivlin±Erick-
sen coe�cients (material
constants) de®ned in the

limit of zero-shear
ai, i � 1, 2 dimensionless form of the

Rivlin±Ericksen coe�-

cients a�i
b coe�cient of thermal

expansivity
b�i , i � 1, 2, 3 dimensional material con-

stants of the ¯uid of
grade three de®ned in the
limit of zero-shear

bi, i � 1, 2, 3 dimensionless form of the
material constants b�i of
the ¯uid of grade three

d angle of inclination of the
enclosure
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measurements by Emery et al. [4], and the other by

RoÈ pke and SchuÈ mmer [5] is a numerical study of the

unsteady natural convection of a four parameter Old-

royd ¯uid.

The wealth of literature concerning the free convec-

tion of linear ¯uids is rather striking when contrasted

with the scarcity of corresponding investigations for

non-linear ¯uids. For completeness, we brie¯y sum-

marize the important developments in the study of the

free convection of linear ¯uids. One of the earliest

attempts to solve the problem of the natural convec-

tion of Newtonian ¯uids in a rectangular cavity is the

analysis by Batchelor [6] who used a perturbation

scheme for small Rayleigh numbers. He concluded

that, for a square cavity, conduction is the main mode

of heat transfer for Ra < 1000: We show that it may

not be the case for non-linear ¯uids. For large Ra,

Batchelor's solution leads to a ¯ow with thin boundary

layers on the walls and an isothermal core region of

constant vorticity. The experimental measurements of

Elder [7] and Eckert and Carlson [8] corroborated that

conduction is the dominant mode of heat transfer at

low Ra. Temperature pro®le is linear between the verti-

cal walls and the ¯ow ®eld exhibits a single cell with

the ¯uid rising and descending along the hot and cold

walls, respectively. At large Ra, thermal and hydrody-

namic boundary layers develop on the vertical walls

with a thermally strati®ed and almost stagnant core

region. For deep cavities, Gill [9] obtained an approxi-

mate solution to the boundary layer equations using a

modi®ed Oseen method. Shallow enclosures were

investigated analytically by Cormack et al. [10]. They

used the method of matched asymptotic expansions to

show that in the limit as the aspect ratio goes to zero,

i.e. for almost ¯at enclosures, the temperature distri-

bution is linear and corresponds to pure conduction

and the ¯ow in the core region is parallel. From their

numerical studies, they also determine the range of val-

idity of their asymptotic expansion. Companion papers

by Imberger [11] and Cormack et al. [12] report exper-

imental and numerical results, respectively, in shallow

cavities.

Several other numerical studies for vertical square

cavities can be found in the literature, for instance,

Wilkes and Churchill [13], de Vahl Davis [14], Roux et

al. [15] to name a few. These studies solve the coupled

energy and momentum equations using the stream

function-vorticity formulation by means of di�erent

®nite di�erence schemes. Studies of natural convection

in inclined cavities have been reported by Ozoe et al.

[16,17]. They performed numerical and experimental

studies and determined that the preferred mode of cir-

culation changed with aspect ratio and angle of incli-

nation, and found both numerically and

experimentally that maximum heat transfer occurred

when the enclosure of aspect ratio one heated from

below was inclined at about 508 from the horizontal

for values of the Rayleigh number less than 104. In the

E dimensionless temperature
di�erence between hot
and cold walls of length

2l
r� dimensional gradient op-

erator

r dimensionless form of the
gradient operator r�

r�2 dimensional Laplacian op-

erator
r 2 dimensionless form of the

Laplacian operator r�2
f� � pÿ p0 dimensional form of the

reduced pressure ®eld
where p and p0 are the
pressure and the reference

pressure, respectively
f1�n�, ÿ1 < n < �1 complex odd eigenfunc-

tions in the biorthogonal

series at the ®rst order of
the perturbation algor-
ithm

G the Gamma function
m zero-shear viscosity

y dimensionless temperature
®eld

y�i �, i � 1, 2, 3 dimensionless component

temperature ®elds at
di�erent orders of the per-
turbation algorithm

r density
t relaxation time
o�i �, i � 2, 3 dimensionless component

vorticity ®elds at the sec-
ond and third orders of
the perturbation algor-

ithm
c� dimensional form of the

stream function
c dimensionless form of the

stream function c�

c�i �, i � 1, 2, 3 dimensionless component
stream functions at var-

ious orders with the
superscript (i ) indicating
order in the perturbation

scheme@ ��; � � �
@ �x; y� the Wronskian
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same parameter range, there is also a local minimum

for the heat transfer when the enclosure of aspect ratio
one heated from below is about 58 of inclination, [16].
This minimum occurs because heat transfer due to

Rayleigh±BeÂ nard type thermal instabilities when the
box is horizontal is gradually reduced due to the creep-
ing motion set by gravitational e�ects as the angle of

inclination is increased from 0 to 58. For inclinations
larger than 58, thermal instabilities are not the domi-

nant mechanism any more and heat transfer increases
with increasing angle of inclination up to 508 to
decrease thereafter when Rayleigh number is less than

104. At higher Rayleigh numbers, maximum heat
transfer occurs at 08 for all aspect ratios when heating

from below (Arnold et al. [18]). But, the local mini-
mum which was at about 58 for Ra < 104 and aspect
ratio one gradually shifts towards 908 with growing

aspect ratios at the same Ra [18]. It appears that the
location of the minimum Nusselt number also shifts
towards 908 with increasing Ra at ®xed aspect ratio.

When heating is from above, maximum heat transfer
always occurs when constant temperature walls are

vertical corresponding to 908 inclination of the enclo-
sure, regardless of the aspect ratio. In this mode, heat
transfer at any inclination can be deduced from that at

908 by using scaling laws when Ra is su�ciently large
and a boundary layer regime develops, and also when
Ra is not large enough to allow essentially a boundary

layer ¯ow to result. None of the features of the corre-
sponding behavior of viscoelastic liquids has been stu-

died. We only know that the onset of instability is far
more complicated than the Newtonian case, and that
although overstability is a distinct theoretical possi-

bility, it may not be observable as very high tempera-
ture gradients or large gravity ®elds are required
(Sokolov and Tanner [19]).

This paper is part of a much broader program in
which we also study numerically the free convection of

the Oldroyd family of ¯uids with and without zero re-
tardation time such as various Maxwell ¯uids. In this
work, we use grade ¯uids to study natural convection

in a two-dimensional rectangular enclosure. In general,
the choice of this rate type constitutive structure would

give realistic results in motions with small strain rates.
In free convection, although the strains may be large,
strain rates are relatively small. In most buoyancy

driven motions, the ¯ow is also slow due to moderate
temperature gradients. In principle, the constitutive

equation of the grade ¯uids is ideally suited for the
study of this class of motions as it comes out of a
more general constitutive structure by retarding the

¯ow. We assume that grade ¯uids are also Fourier and
Boussinesq ¯uids. Presumably, although some viscoe-
lastic ¯uids are also Boussinesq ¯uids, not all viscoelas-

tic ¯uids are necessarily Boussinesq ¯uids. There is no
work towards a proper thermodynamic theory in this

area in the literature. But, it has long been assumed
that Boussinesq approximation holds for viscoinelastic

¯uids [2]. This assumption has been extended to cover
also viscoelastic ¯uids starting with Sokolov and Tan-
ner [19], and all the studies reported in the literature

use the Boussinesq approximation for both inelastic
and elastic ¯uids.
A perturbation method in terms of the Grashof

number is used and the analysis is developed up to
and including third and fourth orders, respectively, for
the velocity and temperature ®elds. Dissipation is

neglected in the energy equation due to moderate
temperature gradients, generating small strain rates
and ¯uid properties are evaluated at an average
temperature. We show that the series holds in an

asymptotic sense, so that qualitative ®eld descriptions
can be obtained for much larger values of the Grashof
number than may be allowed for a uniformly conver-

gent series. The ¯uids of grade two and three naturally
arise at the second and third orders of the analysis.
Even though the analysis is not taken any further than

the third order for the ¯ow ®eld, where non-linear
e�ects appear for the ®rst time, we do not consider
the constitutive equation of the ¯uid of third grade a

constitutive equation in its own right, although it is
properly frame invariant and meets all the require-
ments from a continuum mechanics perspective. We
rather assume that it is the truncated form of a more

general constitutive structure given as an in®nite series,
and feel that this approach provides enough support to
use experimentally determined negative values of the

®rst Rivlin±Ericksen constant.
Fosdick and Rajagopal [20] have shown that for an

incompressible liquid of third grade de®ned by Eqs. (2)

and (3), one must have,

mr0, a�1r0, ja�1 � a�2jR
�������������
24mb�3

q
, b�1 � b�2 � 0,

b�3r0,

�1�

for good stability characteristics if the ¯uid of grade
three is viewed as a constitutive equation in its own
right, assuming that Helmholtz free energy is a mini-

mum in equilibrium and observing the restrictions
imposed by the Clausius±Duhem inequality. But, avail-
able experimental evidence indicates that a�1 < 0 for the
liquids used in these experiments. One may then con-

jecture that either these ¯uids are not grade ¯uids or
they abide by a more encompassing constitutive
equation of which the ¯uid of grade three is the trun-

cated form. The latter may lead to relaxing further the
condition of positive semi-de®niteness (1)2 imposed on
the ®rst Rivlin±Ericksen constant. This intuitively

deduced trend ®nds some adhoc support in that if the
¯uid of second grade is considered to be a constitutive
equation in its own right, the ®rst Rivlin±Ericksen con-
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stant must be strictly positive for good stability charac-

teristics in view of the thermodynamic restrictions.
Some evidence for this view is also provided by the
fact that the structure of the ¯uid of grade three natu-

rally arises at the third-order of any perturbation
analysis.

Overall ¯ow patterns in viscoelastic transport re-
semble qualitatively those in linear ¯uids, but the vel-
ocity levels may be markedly di�erent. The ®rst-order

problems for the temperature and velocity ®elds in this
analysis which apply equally well to both Newtonian
and non-linear liquids are solved analytically. The tem-

perature ®eld at the ®rst order corresponds to pure
conduction. Corrections to this base state describing

convective e�ects are obtained up to and including the
fourth order in the perturbation parameter. The ®eld
equations of the ¯uid of grade two emerge at the sec-

ond order. Although the liquid is incompressible, body
forces, i.e. buoyant forces do not have a potential and
Giesekus±Tanner theorem does not apply. That is, in

general, the ¯ow ®eld of a ¯uid of grade two is not the
same as that of a linear ¯uid of the same viscosity in

non-isothermal ¯ows. But, it turns out that in the
problem under consideration here, non-linear terms
coming from the extra stress at the second order cancel

out, and the ¯ow ®eld is the same as that of the New-
tonian ¯uid of the same viscosity at the second order.
The temperature and velocity ®elds are solved analyti-

cally and numerically, respectively, at this order. The
solution to the third order ¯ow problem has com-

ponents representing the Newtonian ®eld and the elas-
tic and shear-thinning e�ects. Through a parametric
study of the relative in¯uence of elasticity and shear

rate dependent viscosity in shaping the ¯ow ®eld, we
determine that elastic e�ects are the dominant ones by
far. Shear-thinning e�ects are much smaller than elas-

tic e�ects at any aspect ratio and angle of inclination.
For shallow enclosures, the in¯uence of shear-thinning

properties is negligible.
The dependence of the Nusselt number on the ¯ow

characteristics is extensively studied. Nusselt number

increases with increasing second normal stress e�ects
represented by a dimensionless Elasticity number at
®xed Grashof and Prandtl numbers and at any aspect

ratio and angle of inclination. It also increases with
increasing angle of inclination in the range of Grashof

numbers studied when the Elasticity number and the
remaining parameters are held ®xed. Shear thinning
has minimal e�ect, if at all, on the Nusselt number.

We determine that with a�1 < 0 the ¯ow ®eld of the
¯uid of grade three either undergoes a loss of evolution

or more likely an exchange of stability for a critical
value of the Grashof number or equivalently for a
critical Elasticity number when the remaining par-

ameters are held ®xed. An exchange of stability occurs
for gradually smaller critical values of these parameters

as the aspect ratio becomes larger at a given angle of
inclination. A larger angle of inclination precipitates

the onset of this loss of stability. Stability bounds in
terms of the Grashof and Elasticity numbers are not
given because a stability analysis is not conducted. The

perturbation analysis provides a limited window on the
stability parameter space. Nevertheless, it is enough to
state that the ¯uid of grade three with a�1 < 0 may be

subject to loss of stability in non-isothermal ¯ows.

2. Mathematical formulation

We consider the ¯ow regime in a two-dimensional
rectangular cavity of height 2L and width 2D shown in

Fig. 1. The two end walls are kept at di�erent tem-
peratures T1 > T0 and the remaining walls are insu-
lated.

The governing equations subject to the Boussinesq
approximation are,

u� � r�T � ar�2T, r� � u� � 0,

ru� � r�u� � ÿr�f� � rgb
ÿ
eXsin d� eYcos d

��Tÿ T0 �

� r� � S�,

where S� is the extra stress and f� is the reduced

pressure ®eld, f� � pÿ p0, p0 is the static pressure.
r, b, and a are the density, and the coe�cients of ther-
mal expansivity and thermal di�usivity, respectively,

all evaluated at some average temperature. The corre-
sponding boundary conditions are:

u��X, 2D� � u��2L, Y� � 0,

T�X, D� � T1, T�X, ÿD� � T0, T,X�2L, Y� � 0:

The extra stress is represented by the series

Fig. 1. Flow con®guration.
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S� �
X
i

S�i , S�1 � mA�1, S�2 � a�1A
�
2 � a�2A

� 2
1 , �2�

S�3 � b�1A
�
3 � b�2

ÿ
A�2A

�
1 � A�1A

�
2

�� b�3
ÿ
tr A�2

�
A�1, �3�

where A�n is the Rivlin±Ericksen tensor of order n
given by,

A�n�1 �
ÿr�A�n �u� � A�nr�u� �

ÿr�u��T
A�n,

A�1 � r�u� �
ÿr�u��T

:

m is the zero-shear viscosity and a�1, a
�
2, b

�
1, b

�
2, b

�
3 are

material constants de®ned in the limit of zero shear. A
stream function c� is introduced,

u� � c�,Y, v� � c�,X,

together with the following de®nitions,

x � X

D
, y � Y

D
, l � L

D
, y � Tÿ T0

T0
, c � r

m
c�,

�4�
to reduce the governing equations to,

r 2y � Pr
ÿ
c,yy,x ÿ c,xy,y

�
, �5�

c,xr 2c,y ÿ c,yr 2c,x

� G
ÿ
cos d y,x ÿ sin d y,y

�ÿ r ^ r � S, �6�

with boundary conditions,

c,x�2l, y� � c,y�x, 21� � c�2l, y� � c�x, 21� � 0,

�7�

y�x, ÿ 1� � 0, y�x, 1� � E, y,x�2l, y� � 0: �8�
In Eqs. (5) and (6), r 2 and r are dimensionless oper-
ators, S is the dimensionless extra stress tensor and

G � r 2gbT0D
3=m 2, Pr � m=ra are dimensionless num-

bers. The former multiplied with E gives the Grashof
number Gr and the latter is the Prandtl number. We

now consider a solution to Eqs. (5)±(8) by means of a
series expansion of c, y and S to linearize both consti-
tutive and inertial non-linearities.

h�i �
X
n�1

En

n!
h�i�n�, h�i�n� � @ nh�i

@ E
jE�0 �9�

2.1. First-order solution

First-order problem is obtained from Eqs. (5), (6)
and (9),

r 2y�1� � 0, r ^ r � S�1� � G
�

cos d y�1�,x ÿ sin d y�1�,y

�
,

�10�

with boundary conditions,

y�1��x, ÿ 1� � 0, y�1��x, 1� � 1, y�1�,x �2`, y� � 0,

�11�

c�1�,x �2`, y� � c�1�,y �x, 21� � c�1��2`, y�

� c�1��x, 21� � 0: �12�

The solution to the energy equation (10)1 subject to
Eq. (11) is given by,

y�1� � 1

2
�y� 1�, �13�

which corresponds to pure conduction. We compute
for the ®rst-order momentum balance (10)2,

r ^ r � S�1� � r4c�1� � ÿ1
2
G sin d,

c�1� � G sin d c�1�1 , r4c�1�1 � ÿ
1

2
:

�14�

An equivalent problem is formulated by transferring
the driving term in Eq. (14)3 to the boundary,

r4c�1�h � 0, c�1�h � c�1� ÿ c�1�p , c�1�p � ÿ
ÿ
y 2 ÿ 1

� 2
48

,

c�1�h,x�2l, y� � c�1�h,y�x, 21� � c�1�h �x, 21� � 0:

This problem is solved by means of complex bior-
thogonal series,

c�1�h �
X1

n�ÿ1

Cnesnx �Dneÿsnx

s 2n
f�n�1 �y�,

f�n�1 � snsin sncos�sny� ÿ sny cos snsin�sny�,

sin 2sn � 2sn � 0,

where f�n�1 and sn are complex odd eigenfunctions and
complex eigenvalues, respectively. Application of the
boundary conditions at y �21 together with bior-

thogonality yield the following set of algebraic
equations to determine the complex constants Cn and
Dn,

2

s 2m
�
ÿ
Cme2sml �Dme2sml

�
km
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�
X�1
ÿ1

�
Cne2sml ÿ

�
1� sn
1ÿ sn

�
Dne2snl

�

�
�
1ÿ sn
sn

��1
ÿ1

C�m�2 f�n�1 dy,

where

C�m�2 � smsin smcos smyÿ smy cos smsin smy,

km � ÿ4 cos 2sm:

Note that �Cn � Cÿn and �Dn � Dÿn: The in®nite sums

are truncated to N terms to obtain 2N equations with
2N unknowns for Cn and Dn: The complete solution to
Eq. (10)2 is given by,

c�1� � G sin b

"
c�1�h ÿ

ÿ
y 2 ÿ 1

� 2
48

#
, �15�

which represents a single cell ¯ow rising and descend-
ing along the hot and cold walls, respectively.

2.2. Second-order solution

The non-dimensionalized ®eld equations at this

order read,

r 2y�2� � 2Pr
�
c�1�,y y�1�,x ÿ c�1�,x y�1�,y

�
,

2
�
c�1�,x r 2c�1�,y ÿ c�1�,y r 2c�1�,x

�
� G

�
cos d y�2�,x ÿ sin d y�2�,y

�
� 2r ^ r � S�2�,

with homogeneous boundary conditions. We compute,

r ^ r � S�2� � ÿ1
2
r4c�2� � a1

�
c�1�,x r4c�1�,y

ÿ c�1�,y r4c�1�,x

�
,

a1 � a�1=rD
2:

�16�

Using Eqs. (13) and (14)1, the ®eld equations at this

order can be rewritten as,

r 2y�2� � Pr G sin d c�1�1,y, �17�

r4c�2� � G
�

cos d y�2�,x ÿ sin d y�2�,y

�
ÿ 2

�
c�1�,x r 2c�1�,y

ÿ c�1�,y r 2c�1�,x

�
: �18�

The energy equation (17) is solved analytically,

y�2� � G Pr sin d y�2�1 , �19�

y�2�1 � a0 �
X1
i�1

ai
ÿ
elix � eÿlix

�
sin liy�

X1
i�1
�biegiy

� cie
ÿgiy �cos giy�

X1
n�ÿ1

Cnesnx ÿDneÿsnx

4sn

�
��

sin sn ÿ cos sn
2sn

�
y sin�sny� � cos sn

2
y 2cos�sny�

�
:

The parameters in this expression are de®ned below:

a0 � ÿ 1

8l

X1
nÿ�1

1

s 2n

ÿ
sin 2sn � 2

�
�Cn ÿDn ��esnl ÿ eÿsnl �,

am � ÿ 1

4l�elm � eÿlm �
X1

n�ÿ1

�
ÿ
sin 2sn � 2

�
�Cn �Dn �

ÿ
esnl � eÿsnl

�
sin lml

s 2n � l 2
m

,

bm � ÿegmlF1 ÿ egmlF2

eÿ2gml ÿ e 2gml
, cm � ÿegmlF1 � egmlF2

eÿ2gml ÿ e 2gml
,

lm �
�2mÿ 1�p

2l
, gm � llm; m � 1, 2, . . . ,1,

F1 �
�1
ÿ1

y�2�p,x�l, y�cos gmy dy,

F2 �
�1
ÿ1

y�2�p,x� ÿ l, y�cos gmy dy,

y�2�p �
Xÿ1
1

Cnesnx ÿDneÿsnx

2sn

��
sin sn ÿ cos sn

2sn

�
y sin sny

� cos sn
2

y 2cos�sny�
�
:

The aspect ratio l is de®ned in Eq. (4)3, and Cn, Dn

and sn are ®rst-order quantities. Substitution of Eq.
(19) into Eq. (18) yields,

r4c�2� � G 2Pr sin d
�

cos d y�2�1,x ÿ sin d y�1�1,y

�
ÿ 2G 2sin 2 d

�
c�1�1,xr 2c�1�1,y ÿ c�1�1,yr 2c�1�1,x

�
: �20�

Introducing the vorticity o � ÿr 2c and de®ning,

c�2� � G 2Pr sin d cos d c�2�1 � G 2sin 2d
�
Prc�2�2 � c�2�3

�
,

�21�
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we obtain from Eq. (20) three sets of equations with
homogeneous boundary conditions,

r 2o�2�1 � y�2�1,x, r 2o�2�2 � ÿy�2�1,y,

r 2o�2�3 � ÿ2
�
o�1�1,xc

�1�
1,y ÿ o�1�1,yc

�1�
1,x

�
, rc�2�j � ÿo�2�j ;

j � 1, 2, 3:

The ®nite di�erence solution to this set is obtained by
optimal successive over-relaxation.

2.3. Third-order solution

The dimensionless ®eld equations at the third order
derived from Eqs. (5), (6) and (9) are:

r 2y�3� � 3Pr
�
c�2�,y y�1�,x � c�1�,y y�2�,x ÿ c�2�,x y�1�,y ÿ c�1�,x y�2�,y

�
,

�22�

3
�
c�2�,x r 2c�1�,y � c�1�,x r 2c�2�,y ÿ c�2�,y r 2c�1�,x

ÿ c�1�,y r 2c�2�,x

�
� G

�
cos d y�3�,x ÿ sin d y�3�,y

�
� 6r ^ r � S�3� �23�

where

r ^ r � S�3� � ÿ1
6
r4c�3� � 1

2
a1
�
c�1�,x r4c�2�,y � c�2�,x r4c�1�,y

ÿ c�1�,y r4c�2�,x ÿ c�2�,y r4c�1�,x

�
� b1r ^ r

� A�3�3 �
ÿ
b2 � b3

�r ^ r � �tr

�
A�1�1

� 2
�
A�1�1 ,

b1 � b�1m=r
2D4, b2 � b3 �

ÿ
b�2 � b�3

�
m=r 2D4: �24�

bi represent dimensionless constitutive constants. The
dimensionless ®rst Rivlin±Ericksen constant a1 was

de®ned in Eq. (16)2. The dimensional counterparts a�1
and b�i appeared in the constitutive structures (2) and
(3), respectively. Using Eqs. (14)2 and (21), the energy

equation (22) can be recast as,

r 2y�3� � 3Pr G 2sin d

�
ÿ 1

2

�
Pr cos d c�2�1,x

� Pr sin d c�2�2,x � sin dc�2�3,x

�
� Pr sin d

�
y�2�1,xc

�1�
1,y ÿ y�2�1,yc

�1�
1,x

��
: �25�

De®ning,

y�3� � Pr 2G 2sin d
�

cos d y�3�1 � sin d y�3�2

�
� Pr G 2sin 2d y�3�3 ,

we obtain a set of three equations from Eq. (25) for
the temperature ®eld,

r 2y�3�1 � ÿ
3

2
c�2�1,x, r 2y�3�2 � ÿ

3

2
c�2�2,x � 3

@
�
y�2�1 , c�1�1

�
@ �x, y� ,

r 2y�2�3 � 3c�2�3,x,

all with homogeneous boundary conditions. Similarly,
by introducing the vorticity and de®ning,

c�3� � G 3
h
Pr 2sin d cos d c�3�1 � Pr 2sin 2d cos d c�3�2

� Pr sin 2d cos d c�3�3 � Pr 2sin3d c�3�4

� Pr sin3d c�3�5 � sin3d c�3�6 � a1sin 2d c�3�7

� a1Pr sin3d c�3�8 � a1Pr sin 2d cos d c�3�9

� b1sin3d c�3�10 �
ÿ
b2 � b3

�
sin3d c�3�11

i
,

we recast the momentum balance (23) at this order as
a set of 11 equations,

r 2o�3�1 � y�3�1,x, r 2o�3�2 � y�3�2,x ÿ y�3�1,y,

r 2o�3�3 � y�3�3,y ÿ 3
@
�
o�1�1 , c�2�1

�
@ �x, y� ÿ 3

@
�
o�2�1 , c�1�1

�
@ �x, y� ,

r 2o�3�4 � ÿy�3�2,y,

r 2o�3�5 � ÿy�3�3,y ÿ 3
@
�
o�1�1 , c�2�2

�
@ �x, y� ÿ 3

@
�
o�2�2 , c�1�1

�
@ �x, y� ,

r 2o�3�6 � ÿ3
@
�
o�1�1 , c�2�3

�
@ �x, y� ÿ 3

@
�
o�2�3 , c�1�1

�
@ �x, y� ,

r 2o�3�7 � ÿ3
@
�
r 2o�2�1 , c�1�1

�
@ �x, y�
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r 2o�3�8 � ÿ3
@
�
r 2o�2�2 , c�1�1

�
@ �x, y� ,

r 2o�3�9 � ÿ3
@
�
r 2o�2�3 , c�1�1

�
@ �x, y�

r 2o�3�10 � ÿ6r ^ r � A�3�3 ,

r 2o�3�11 � 6r ^ r �
�
tr
�
A�1�1

� 2

A�1�1

�

r 2c�3�j � ÿo�3�j ; j � 1, . . . ,11:

The notation
@ ��; � ��
@ �x; y� in these equations denotes the

usual Wronskian. The solution to the sets of 3 and 11
equations for the temperature and velocity ®elds, re-
spectively, are obtained by a ®nite di�erence method,

where the partial derivatives are approximated by cen-
tral di�erences. The resulting algebraic equations are
solved by optimal successive over-relaxation. The opti-

mum relaxation parameters need to be determined
only once for c±o set and once for an energy equation
set.

2.4. Fourth-order solution for the temperature ®eld

The e�ect of structural non-linearities on the tem-
perature ®eld is felt at the fourth order of the analysis

for the ®rst time. The problem which de®nes the tem-
perature ®eld at this order is derived from Eqs. (5) and
(9),

r 2y�4� � Pr

24
4
@
�
y�3�, c�1�

�
@ �x, y� ÿ 4

@
�
y�1�, c�3�

�
@ �x, y�

� 6
@
�
y�2�, c�2�

�
@ �x, y�

35
, �26�

with homogeneous boundary conditions. For conven-

ience we de®ne,

y�4� � G 3Pr
h
Pr 2sin d cos 2d y�4�1 � Pr sin3d cos dy�4�2

� Pr sin 2d cos d y�4�3 � Pr 2sin3d y�4�4 � Pr sin3dy�4�5

� sin3d y�4�6 � a1sin3d y�4�7 � a1Pr sin3d y�4�8

� a1Pr sin 2d cos d y�4�9 � b1sin3d y�4�10

� ÿb2 � b3
�
sin3d y�4�11

i
,

and obtain the following set of equations from Eq.

(26),

r 2y�4�1 � ÿ2c�3�1,x,

r 2y�4�2 � 4
@
�
y�3�1 , c�1�1

�
@ �x, y� � 6

@
�
y�2�1 , c�2�1

�
@ �x, y� ÿ 2c�3�2,x,

r 2y�4��3� � ÿ2c�3�3,x,

r 2y�4�4 � 4
@
�
y�3�2 , c�1�1

�
@ �x, y� � 6

@
�
y�2�1 , c�2�2

�
@ �x, y� ÿ 2c�3�4,x,

r 2y�4�5 � 4
@
�
y�3�3 , c�1�1

�
@ �x, y� � 6

@
�
y�1�1 , c�2�3

�
@ �x, y� ÿ 2c�3�5,x,

r 2y4j � ÿ2c�3�j,x ; j � 6, . . . ,11:

These are solved numerically by the same method used
in computing the third-order solution.

3. Discussion

The ®rst Rivlin±Ericksen constant a�1, and also b�1
which is related to a�1, are proportional to the ®rst nor-
mal stress di�erence. All the driving terms with a1 and

b1 at the third and fourth orders represent the in¯u-
ence of the ®rst normal stress di�erence in shaping the
®eld. It is easy to show that the dimensional form b�1
of b1 can be de®ned in terms of the shear relaxation

modulus G�s�,

3!b�1 � ÿ
�1
0

s3
dG

ds
ds:

A representation for G(s ) rapidly decaying in time

used by Siginer and Valenzuela [21] and Siginer [22],
by no means unique,

G�s� � m
tkG�k�s

kÿ1eÿs=t, t � ÿ a�1
km

, 0 < k < 1, a�1 < 0,

where t, k and G are the relaxation time, power index
and Gamma function, respectively, is assumed and b�1
and b1 are computed as,

b�1 �
mt 2

2
k�k� 1�, b1 �

k� 1

2k
a 2
1 : �27�

We introduce the Weissenberg number W, a measure
of the elasticity of the ¯uid, together with the Reynolds
and Elasticity numbers Re and E,
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W � tU
D

, Re � DU

n
, E � W

Re
,

where t and U are the relaxation time and a character-
istic velocity, respectively, and express Eq. (27), with
the help of Eqs. (24)1 and (16)2 as,

b1 � E 2 k

2
�k� 1�, a1 � ÿkE:

The exponent (k ) in the expression for the shear relax-
ation modulus G(s ) is both an enhancement factor for
linear elasticity and a measure of the degree of coup-

ling of the viscous and linearly elastic e�ects. We also
introduce a dimensionless Shear-thinning number S
de®ned as,

S � St

Re
, St �

ÿ
b�2 � b�3

�
U

rD3
,

in terms of a characteristic velocity U. Then Eq. (24)2
can be simply written as,

b2 � b3 � S < 0:

The elasticity number E which does not depend on the

¯ow and stays constant with changing U governs the
structure of the ¯ow ®eld and the heat transfer charac-
teristics of the system to a much larger degree than the

Shear-thinning number S. Depending on the aspect
ratio, but not so much on the angle of inclination, the
in¯uence of the latter may even be negligible compared

to the former.
To show that the series solution is good in an

asymptotic sense, we consider the linear case �E � S �
0� and solve the ®eld equations numerically by a ®nite
di�erence method for di�erent values of the Grashof
number when the Prandtl number is ®xed, that is for
increasing Rayleigh numbers, and compare the series

solution in terms of the Grashof number to the nu-
merical solution for di�erent angles of inclination and
aspect ratios ranging from 1/2 to 3. We note that the

perturbation parameter in the series is not really the
dimensionless temperature di�erence E, but rather the
Grashof number Gr as EnG n � Grn at each and every

order. Comparison establishes that the series give bet-
ter than qualitative results for Rayleigh numbers
Ra � 800 �Gr � 80, Pr � 10�, and Ra � 200 �Gr �
200, Pr � 1� for the linear case. As greater values of

the Grashof number indicate larger convective e�ects,
therefore signi®cant deviations from the base state of
conduction, we choose to do a parametric study for

Gr � 200, Pr � 1 assuming with good reason that the
asymptotic goodness of the series also holds in the
constitutively non-linear case �E 6�06�S� at this Grashof

and Prandtl numbers. Evidence that the asymptotic
series for the non-linear case converge to a smoothly
evolving solution in the neighborhood of the true sol-

ution, if not to the real solution itself is supplied by

the temperature ®eld. Up to and including third order
terms in the analysis, the solution of the energy
equation corresponds to the linear case and provides a

good criteria when compared to the full numerical sol-
ution of the linear case. At worst, this choice will yield
a roughly qualitative description of the ®eld for a non-

linear ¯uid with Pr � 1 at Gr � 200: Pr � 1 implies
that momentum is di�used through viscosity at the

same rate as heat is di�used through conduction in the
¯uid. For most non-Newtonian ¯uids, this may not
hold true as heat is di�used at a rate at least an order

of magnitude times slower than the rate of di�usion of
momentum. Nevertheless, this does not preclude the

existence of non-linear ¯uids with Pr � 1: Further, the
behavior at Pr � 1 may certainly be a qualitative indi-
cation of the behavior at Pr � 10 at the same value of

the Gr.
An inspection of the dimensional parameters

embedded in the expressions for the elasticity and

shear-thinning numbers E and S makes it clear that it
is reasonable to adopt E020 and S0ÿ 0:1 as extre-

mums of these parameters. Based on past experience
[21,22], we choose k � 0:05 for the coupling parameter.
Some comments on the solution at various orders in

the asymptotic expansion are in order. At the ®rst
order, the temperature distribution is linear between

the cold and hot walls and corresponds to pure con-
duction. This is the result of the damping e�ect of vis-
cosity overcoming the buoyancy forces for small Gr.

The stream function contours show a clockwise single
cell ¯ow. For smaller aspect ratios, the ¯ow is parallel
in the core region. This is in agreement with the results

of Cormack et al. [10]. At this order, the solution for
the temperature ®eld is independent of the inclination,

aspect ratio and Pr. On the other hand, the magnitude
of the stream function c�1� depends on the inclination
and Pr, but, contour plots are qualitatively unaltered

with varying inclination and Pr. The results for the
second-order temperature ®eld y�2� show a strong
dependence on x (see Fig. 1 for x ) in contrast to y�1�

which is independent of x. As in the case for c�1�, only
the magnitude of y�2� is a�ected by the inclination and

Pr. The graph for c�2� shows a single cell counterclock-
wise ¯ow. The circulation mode at the second order,
however, is strongly dependent on the inclination and

the Pr. At an angle of 908, the ¯ow structure may dis-
play several cells for instance, depending on the aspect

ratio. For very small Pr, the ¯ow is also multicellular.
At the second order, the constitutive structure is

that of the ¯uid of grade two. Giesekus±Tanner the-

orem states that for incompressible non-Newtonian
¯uids, if the body forces have a potential, the velocity
®eld is the same as that of the Newtonian ¯uid of the

same zero shear viscosity. Non-Newtonian e�ects are
felt only in the pressure ®eld. But, in natural convec-
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tion, buoyant body forces do not have a potential, and

it is expected in general that the velocity ®eld of a ¯uid

of grade two would be di�erent from the Newtonian
liquid of the same viscosity. Surprisingly, in this analy-

sis, non-linear terms at the second order cancel out

and the velocity ®elds are the same. Therefore, consti-
tutive non-linearities appear in the velocity ®eld at the

third order for the ®rst time.

Composite graphs of the velocity and temperature

®elds up to and including the third and fourth orders,

respectively, in terms of the Grashof number will be
presented for the former and the latter. Velocity ®elds

of the linear and non-linear ¯uids are qualitatively

similar, but velocity levels may be markedly di�erent.
Interesting phenomena are observed for aspect ratios

lr1 both in terms of the structure of the ®eld and the

heat transfer characteristics. We present in Figs. 2±5

the comparison of the isotherms for a shear-thinning
and elastic ¯uid (full lines) and a Newtonian ¯uid of

the same viscosity (interrupted lines) for four di�erent

aspect ratios at the same Grashof and Prandtl numbers
and inclination. The isotherms do not deviate much

from the linear case for l < 1 (Fig. 1). But as l

approaches aspect ratio one from below, large devi-

Fig. 2. Isotherms for an aspect ratio l � 1=2: Gr � 200,

Pr � 1, d � 908, E � 20, S � ÿ0:1: The curves represent the

variation of the dimensionless temperature ®eld y from the

hot (right) to the cold wall (left). The isotherms are equally

spaced. The full and interrupted lines correspond to the non-

linear �E � 20, S � ÿ0:1� and linear �E � S � 0� cases, re-

spectively.

Fig. 3. Same as Fig. 2 except that the aspect ratio is l � 1:

Fig. 4. Same as Fig. 2 except that the aspect ratio is l � 2:

Fig. 5. Same as Fig. 2 except that the aspect ratio is l � 3:
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ations occur (Fig. 2). At aspect ratios l > 1, a wavi-

ness, which tends to increase with the aspect ratio at
the same Grashof number, sets in, in contrast to New-

tonian isotherms which show very little of it if any

(Figs. 3 and 4). The waviness may be interpreted as
the onset of shear-elasticity waves, a phenomenon simi-

lar to inertial waves in steady isothermal ¯ow, and has
consequences concerning the heat transfer character-

istics of the system. In particular, increasing waviness
signals the imminent onset of loss of stability for the

¯ow ®eld.

At aspect ratios equal to and smaller than one, in a
reasonably large neighborhood of l � 1 from below,

for instance for 1=3RlR1, the ¯ow ®eld has a single

cell structure rotating in the same clockwise direction
as the linear case, but the velocity levels are quite

di�erent. The cell structure remains the same as the
aspect ratio l42: But, at these large aspect ratios, the

¯ow structure shows an interesting instability with
increasing convective e�ects, i.e. increasing Grashof

numbers, for the same values of the elasticity and

shear-thinning parameters E and S (Figs. 6 and 7).
The in¯uence of increased convective e�ects is clear

from the Newtonian plots of Figs. 6 and 7. The stream
function values are increased threefold. In Fig. 6, the

presence of shear-elasticity waves are signaled by the

waviness of the streamlines closer to the center of the
enclosure. As convective e�ects increase, the waviness

increases and the structure of the ®eld loses its stab-
ility, exchanging it for a multicellular structure with

saddle points (Fig. 7). This loss of stability is also
observed at larger aspect ratios, but it seems to occur

at smaller Grashof numbers as the aspect ratio grows

larger. Such behavior may lead to bubble formation

and encapsulation, as is evident from Fig. 7. These fea-
tures may be undesirable and are to be avoided in
many industrial processes. In all the graphs presented

so far, if we remove the shear-thinning capability
�S � 0), the qualitative behavior remains the same for
lR1 and almost the same for l > 1: As l increases,
shear-thinning e�ects also increase monotonically, but

they are always overshadowed by elastic e�ects at all
angles of inclination. On the other hand, removal of
the elastic properties �E � 0� makes the ®eld collapse

to the neighborhood of the Newtonian behavior. We
conclude that the elastic properties are responsible for
the computed loss of stability. Very highly shear-thin-

ning, inelastic liquids are not at all likely to show any
interesting behavior qualitatively, considerably di�er-
ent from linear ¯uids. This conclusion also carries over

to the heat transfer characteristics as it will be shown
later. As convective e�ects become stronger, the
instability may occur much earlier in terms of the

Grashof number, all other factors being ®xed, for a
liquid with higher elasticity.
The variation of the average Nusselt number Nu

with the inclination d of a cavity of various aspect
ratios is shown in Fig. 8. Average heat transfer as rep-
resented by Nu seems to tend towards a limit at any

angle of inclination as the aspect ratio approaches 1/2
from above. The limiting value for Nu is 0.5 when l �
1=2: Very little variation in Nu can be detected with

changing d at this aspect ratio. For aspect ratios smal-
ler than 1/2, there is no variation in Nu with d: For
any aspect ratio Nu40:5 as d4 �0; p�: Nu increases

with increasing l, and shows considerable variation
with d, symmetric with respect to d � 908: In the
absence of BeÂ nard type instabilities, convection would

Fig. 6. Streamline contour plots for the linear (left) and non-

linear (right) cases when the aspect ratio is l � 2: Gr � 85,

Pr � 10, d � 908, E � 20, S � ÿ0:1, k � 0:05, W c � 0:186
(left), W c � 0:178 (right). The stream function values on the

contour plots vary at equal intervals between the cmax and 0

at the walls.

Fig. 7. Same as Fig. 6 except Gr � 200, Pr � 1, W c � 0:503
(left), W c � 0:947, * c � 0:113: Streamfunction values on

the contour plots vary at equal intervals between the indicated

c's and 0 at the walls.
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be symmetric about 908 and zero at 0 and 1808. Elas-
ticity has very little e�ect on the onset of convection
due to BeÂ nard instability and the critical Rayleigh

number Rac is almost the same as that of the linear
case [19]. Thus, the Ra � 850 in Fig. 8 is well below
Rac and symmetric convection and heat transfer pat-

terns are obtained. We also note that at this Grashof
and Prandtl numbers, Gr � 85 and Pr � 10, an
exchange of stability has already taken place when
l � 3, resulting in a lower Nu than when l � 2 at any

angle of inclination.
The variation of the local Nusselt number Nu�x� for

di�erent aspect ratios with changing angle of incli-

nation shows interesting features. We present in Figs.
9 and 10 the variation of Nu�x� at d � 45 and 908
when l � 1=2: Shear dependent viscosity characteristics

have minimal in¯uence at small aspect ratios, if at all,
both in shaping the ¯ow ®eld and in determining the

heat transfer characteristics. But, elasticity (the second
normal stress di�erence) in¯uences both to a large

degree. This is in keeping with our previous con-
clusions. Heat transfer increases and decreases locally
from x � 0 to ÿL and from x � 0 to L, that is, in the

lower and upper halves of the cavity, respectively, at
all angles of inclination. The magnitude of this change
increases with d as d4p=2 from above or below. But,

interestingly enough, the increase and decrease in the
lower and upper halves is almost symmetric at any d
with respect to the mid-span, and the average Nusselt

number Nu is not much di�erent from the Newtonian
Nu: Mid-span is approximately a ®xed point which
does not change with varying aspect ratio and incli-
nation of the cavity at moderate Grashof numbers.

Fig. 11 shows the variation of Nu�x� for l � 1 at d �
458: The behavior of Nu�x� when l � 1 and d � 908,
not shown here, is similar to Fig. 11. The remarks con-

cerning aspect ratio l � 1=2 remain essentially valid for
l � 1 except local Nusselt numbers in the lower and

Fig. 8. Variation of the average Nusselt number Nu with

aspect ratio l and angle of inclination d: * l � 1=2, Q l � 1,

R l � 2, T l � 3: Gr � 85, Pr � 10, E � 20, S � ÿ0:1,
k � 0:05:

Fig. 9. Variation of the local Nusselt number Nu(x ) at

d � 458 for l � 1=2: Gr � 200, Pr � 1, (Ð) Newtonian; (- - -)

E � 20, S � ÿ0:1, k � 0:05; (*) E � 0, S � ÿ0:1; (w)

E
 � 20, S � 0, k � 0:05:

Fig. 10. Same as Fig. 9 except d � 908:

Fig. 11. Variation of the local Nusselt number Nu(x ) at

d � 458 for l � 1: Gr � 200, Pr � 1, (Ð) Newtonian; (- - -)

E � 20, S � ÿ0:1, k � 0:05; (*) E � 0, S � ÿ0:1; (w)

E � 20, S � 0, k � 0:05:
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upper halves of the cavity are much larger and smaller,

respectively, than those for l � 1=2, in particular when
d � 908: In fact, total heat transfer in the lower and
upper halves of the cavity increases and decreases, re-
spectively, monotonically at the same aspect ratio as

the angle of inclination changes from 0 to 908. Shear
dependent viscosity starts making its e�ect felt on the
®eld when l � 1: But, its in¯uence is quite small and

normal stresses always remain by far the dominant
factor.
Moving on to aspect ratio l � 2, we present in Figs.

12 and 13 the variation of Nu�x� when d � 45 and 908
after loss of stability, for the ®eld depicted in Fig. 7
when Gr � 200, Pr � 1: The graphs of Nu�x� before
loss of stability for this aspect ratio are quite similar to

those for l � 1 with the exception that overall heat
transfer is higher, that is Nu is larger, and the total
heat transfer together with Nu�x� in the lower and

upper halves of the cavity is larger and smaller, re-

spectively. Shear thinning plays a somewhat larger role

than in the case of l � 1: In fact, as the aspect ratio
gets larger, shear-thinning e�ects gradually and mono-
tonically become non-negligible in shaping the ®eld.

Shear thinning acts to attenuate somewhat elastic
e�ects, as is evident from Figs. 10 and 11. The larger
the aspect ratio and the closer the angle of inclination
to 908, the larger becomes the magnitude of this at-

tenuation.
Heat transfer characteristics of the ®eld after stability

is lost and are drastically di�erent from those of the

smoothly evolving ®eld, Figs. 12 and 13. Shear thinning
is of considerable signi®cance and enhances and lowers
Nu in the lower and upper halves of the cavity, respect-

ively, together with Nu�x�: But, elasticity has exactly the
opposite e�ect, in contrast to its in¯uence on the
smoothly evolving ®eld before the loss of stability.

Increasing the angle of inclination only increases the
e�ects of the shear thinning and of the second normal
stress di�erence as it also did before the critical Grashof
or Elasticity numbers were reached, Fig. 13. The net

result is that at any angle of inclination overall heat
transfer in the lower and upper halves of the cavity are
lower and higher than the linear case in contrast to the

comparative evolution of the non-linear case before loss
of stability. The variation of Nu�x� when l � 3 is shown
in Fig. 14. Prominent features of the local heat transfer

in Fig. 13 where l � 2 are accentuated in Fig. 14, where
l � 3 at the same d, thereby pointing to a clear trend as l
becomes larger.

4. Conclusions

For aspect ratios smaller than one shear thinning
and elastic e�ects through the ®rst normal stress di�er-
ence, as embodied in the dimensionless shear-thinning

Fig. 12. Variation of the local Nusselt number Nu�x� at

d � 458 for l � 2: Gr � 200, Pr � 1, (Ð) Newtonian; (- - -)

E � 20, S � ÿ0:1, k � 0:05; (*) E � 0, S � ÿ0:1; (w)

E � 20, S � 0, k � 0:05:

Fig. 13. Same as Fig. 12 except d � 908:

Fig. 14. Variation of the local Nusselt number Nu�x� at

d � 908 for l � 3: Gr � 200, Pr � 1, (Ð) Newtonian; (- - -)

E � 20, S � ÿ0:1, k � 0:05; (*) E � 0, S � ÿ0:1; (w)

E � 20, S � 0, k � 0:05:
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and elasticity numbers, have a minimal and strong in¯u-
ence, respectively, in shaping the ¯ow ®eld and determin-

ing the heat transfer characteristics. As the aspect ratio
becomes larger, their e�ect grows with it. The in¯uence
of shear-thinning is negligible for shallow cavities in

shaping both the ¯ow ®eld and the heat transfer charac-
teristics. Its in¯uence starts becoming noticeable at l � 1
and gradually grows larger as the aspect ratio increases

further at ®xed angle of inclination and vice-versa, but
always remains much smaller than normal stress e�ects
at any angle of inclination and aspect ratio, always

attenuating normal stress e�ects. The latter, by far the
dominant factor, grow in magnitude considerably with
increasing angle of inclination at ®xed aspect ratio, as
well as with increasing aspect ratio at ®xed angle of incli-

nation when the Grashof and Elasticity numbers are held
®xed. The combined e�ect of shear-thinning and elas-
ticity acts to increase and decrease total heat transfer rep-

resented by the average Nusselt number almost equally
in the lower and upper halves of the cavity in the ®rst
quadrant, and vice-versa in the second, with the result

that the overall heat transfer for the linear and non-linear
cases are quite close at moderate Grashof numbers.
The ¯ow ®elds of the Newtonian ¯uid and the ¯uid

of grade three with a negative ®rst Rivlin±Ericksen
constant are qualitatively similar when both are
assumed to be Boussinesq ¯uids and have the same
zero shear viscosity. But, the velocity levels are mark-

edly di�erent. The ¯ow ®eld of the grade ¯uid evolves
smoothly with increasing Grashof numbers at ®xed
Prandtl, elasticity and shear-thinning numbers until a

critical Grashof number is reached. Stability is lost at
gradually decreasing values of the critical Grashof
number as the aspect ratio increases. The instability is

triggered by the presence of elastic e�ects in the region
of validity of the asymptotic series, and occurs at
gradually higher Grashof numbers as the elasticity
number is reduced at ®xed aspect ratio and angle of in-

clination. Average and local Nusselt numbers after the
loss of stability at a Grashof number close to the
threshold are smaller than those at a Grashof number

somewhat smaller than the critical Grashof number.
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